Accelerating Muons Options and R&D

J. Scott Berg
Brookhaven National Laboratory
NuFact 06
27 August 2006

Challenges of Accelerating Muons

- Primarily talking about neutrino factories, some comments on muon colliders
- Muons decay: must accelerate rapidly
- Muon beam sizes are large
 - Beam can be made smaller by ionization cooling
 - * Ionization cooling is expensive: do as little as needed
 - ⋆ Creating very small beam sizes is technically challenging
 - Large transverse beam sizes
 - ⋆ Magnet apertures large
 - * Smaller for muon colliders: more cooling
 - Large energy spreads (longitudinal beam sizes)
 - ⋆ Still large for muon collider
 - ◆ Forced to low frequency RF (200 MHz or lower)

Simple Solution: Linac

- Why not just use a linac?
- Low frequency, large aperture means linac is very expensive
 - Most of the cost is in the RF accelerating systems
 - Thus, less costly solutions will make multiple passes through the RF
 - ⋆ To lowest order, the number of passes through the RF is the standard by which we judge accelerating systems

Linac

Time of Flight and Transverse Amplitude

- Technical problem (comes up again later): time of flight depends on transverse amplitude
- Larger transverse amplitude, longer path for particle trajectory
- Large transverse beam sizes, high amplitude particles are no longer on RF crest
- Except for very low energies, no synchrotron oscillations
 - Synchrotron oscillations swap late and early particles
 - Desirable to introduce synchrotron oscillations

Recirculating Linear Accelerators (RLAs)

- Make multiple passes through linacs, connecting them with arcs
- After each linac pass, beam goes through a different arc
 - Switching between arcs limits number of turns
 - ★ Finite beam size and energy spread, cannot overlap different passes
 - ⋆ Need space between magnets for different passes (coils!)
 - ◆ Turns limited in practice to 5 or so

Dogbone RLA

- Can change the geometry of the RLA for improved efficiency
 - For same total amount of linac, more separation at switchyard
 - ◆ For same switchyard, smaller amount of linac (double passes!)
- More complicated lattice
 - ◆ Requires vertical bending: crossing arcs
 - Two bending directions adds complication

Fixed Field Alternating Gradient Accelerators (FFAGs)

- To get more turns, eliminate the switchyard
 - Eliminate the separate arcs
- Make an arc which accepts a factor of 2 or more in energy: FFAG
 - Circular ring, RF cavities distributed around the ring
- Potentially allows many more passes through the RF

FFAGs

Limitations to Number of Turns

- Maintain high field gradient
 - Bending field determines circumference
 - Number of turns determined by gradient and energy range
- Cannot replenish stored energy in cavities between turns
 - Can't extract too much stored energy
 - Limits number of passes through RF
- Can't control revolution time for each pass
 - Particles won't stay on the RF crest
 - More passes, get further off crest
- In general, more efficient at higher energy

Full Neutrino Factory Acceleration System

- Acceleration involves all the systems described above
- Which system to use at what energies determined by cost
 - Strongly related to number of passes through RF

Full Acceleration System Linac

- RLAs have difficulty with low energy
 - Velocity difference between linac passes
 - Large beam size
- RLA stage works best with a modest factor in energy increase
- Low energy thus most efficiently done with a Iniac

Full Acceleration System RLAs

• Use RLAs for lower energies until FFAGs become more efficient

Full Acceleration System FFAGs

 Use FFAGs once the energy is high enough for them to be more efficient than RLAs

Muon Colliders

- Above systems were for neutrino factory
- Muon collider acceleration system will have to start similarly
 - Large longitudinal emittance
- At higher energies, may be able to use less expensive systems
 - In particular, use of ILC structures has been discussed

R&D Areas Outline

- RLA R&D: increasing turns
- FFAG R&D
 - Scaling FFAGs
 - ⋆ Low frequency FFAG scenario
 - ⋆ High frequency with harmonic number jump
 - Linear non-scaling FFAGs
 - * Time of flight dependence on transverse amplitude
 - ⋆ Electron model: EMMA
 - Nonlinear non-scaling FFAGs
- Superconducting RF research

FFAG R&D Scaling FFAGs

- "Scaling" FFAGs: original type of FFAGs, built in the 1950s
- In Japan, scaling FFAGs have been built, under construction

Scaling FFAGs Magnet Aperture

- FFAGs cover a wide range of energies (factor of 2 or more)
- Beam follows different trajectory at different energies
- Forces a wide magnet aperture
- Scaling FFAGs have most of their bending in horizontally focusing magnets
 - Aperture would be smaller if bending were in horizontally defocusing magnets
- Larger apertures become a problem at higher energies, where high-field superconducting magnets are desirable
 - ◆ If one can use iron magnets, wide apertures but smaller vertical apertures are cost effective
 - * Current research looking at this option for muon acceleration
 - ⋆ Best at lower energies?

Scaling FFAGs Time of Flight

- FFAGs cover a wide range of energies (factor of 2 or more) in a single beamline
- Time of flight depends on energy
- Each turn takes a different amount of time

Scaling FFAGs Time of Flight: Synchronization to RF

- Particles accelerated by RF waveform, prefereably near crest
- Particles are synchronized to RF wave at only one energy
- At other energies (time wrong), will move off the RF crest
- Accelerate in more turns, more turns to move off crest
- Lower RF frequency, longer RF period, can take more turns Voltage

Scaling FFAGs Low Frequency

- Scaling FFAGs forced to use low frequency (15 MHz range)
 - ◆ Low compared to 200 MHz
 - All upstream systems forced down to this frequency
- Gradients are lower than for 200 MHz: more decays
- High peak power requirements for these frequencies
- Important research areas for scaling FFAG use
 - High-gradient, low-frequency RF
 - Ability to rapidly vary cavity frequency with high gradient
- Muon capture slightly less efficient
- Ionization cooling probably not possible: won't work for collider

Scaling FFAGs Harmonic Number Jump

- Time of flight on each turn is an integer number of RF periods
- That integer can be different on each turn
- Allows the use of high frequency, high-gradient RF

Scaling FFAGs Harmonic Number Jump R&D Topics

- High frequency fundamental mode cavity too small for wide aperture
 - Use higher order cavity mode: design the cavity
- Requires non-uniform energy gain per turn
 - Design cavity that does this, or
 - Use nearby frequencies to create beat wave (inefficient?)
- Need to fill entire ring with cavities to maintain gradient (decays)
 - One side of ring, period is integer number of RF periods
 - Half turn later, period is half-integer number of RF periods
 - May use beat waves again, or find other methods to address

FFAG R&D Linear Non-Scaling FFAGs

- Reduce magnet aperture
 - Most bending occurs in horizontally defocusing magnets
- Make time of flight independent of energy for one energy in range
 - Allow the use of higher-frequency RF

Linear Non-Scaling FFAGs Time of Flight

Linear Non-Scaling FFAGs Design Principles

- Sacrifice: scaling FFAGs have constant tune, avoid resonances.
 Linear non-scaling FFAGs don't do this.
- Use linear magnets to avoid driving nonlinear resonances
- Maintain symmetry (short, identical cells) to avoid driving linear resonances
 - True for most any FFAG
 - Beware of errors
- Accelerate rapidly through remaining weakly driven resonances
 - Automatic for muons

Linear Non-Scaling FFAGs Time of Flight Depends on Transverse Amplitude

- As with linac, time of flight depends on transverse amplitude
 - Not a problem in scaling FFAGs: correcting chromaticity fixes the problem
- High amplitude particles arrive late
- To accelerate them, high-amplitude particles should arrive early
- Creates a problem passing beam from one stage to the next
- Problem with a limited phase space that will be accelerated

Linear Non-Scaling FFAGs Long. Phase Space at Different Trans. Amplitudes

Linear Non-Scaling FFAGs Addressing Time of Flight Problem

- Choose machine parameters optimally to transmit particles at all transverse amplitudes
- Add some sextupoles to correct chromaticity
 - Reduction in dynamic aperture, but some is acceptable
- Add higher RF harmonics
- Increase average RF gradient
 - Add cavities to empty cells
 - Maybe put more cavities per cell
 - Important to have high gradients in the cavities!
 - Reduces number of passes through cavities
- Maybe put positive chromaticity in transfer lines
- Most of this increases cost

Linear Non-Scaling FFAGs Chromaticity Correction

Linear Non-Scaling FFAG Electron Model (EMMA)

- Linear non-scaling FFAG has never been built
- Would like to test whether we understand the dynamics in such a machine
- Build a 10–20 MeV model that accelerates electrons
- Test our understanding of
 - Longitudinal dynamics
 - Transverse dynamics when acelerating through many weak resonances
 - Sensitivity to errors
- In the proposal stages now, sited at Daresbury

Linear Non-Scaling FFAG Longitudinal Dynamics

Nonlinear Non-Scaling FFAGs

- Try to improve performance of non-scaling FFAGs by using highly nonlinear magnets
 - Reduce time of flight variation with energy
 - Reduce tune variation with energy
 - ⋆ Hope to improve aperture over scaling FFAGs
- Thus far, transverse dynamic aperture is too low for muons

Superconducting RF R&D

- High gradient important
 - Minimizing muon decay
 - Reduces dynamics problems with FFAGs and linacs
- Use Nb surface on Cu cavities
- 200 MHz cavities built and tested (Cornell, CERN)
 - ◆ Sputtered surface: Q-slope very high
- Research ongoing on trying to find better surface (testing on 500 MHz, Cornell, JLab, INFN, ACCEL, others)
 - Explosion-bonded Nb-Cu plates look most promising
- Tested with magnetic field applied after cool down
 - Succeed to 0.12 T
 - Need to verify this works operationally

Superconducting RF

Q-Slope

Conclusions

- Acceleration of muons requires a number of different types of subsystems
- Designs driven by avoiding decay, large beam sizes, and reducing costs
- Much R&D is focused on FFAGs
 - Scaling FFAGs: harmonic number jump method looks interesting
 - Linear non-scaling FFAGs: address time of flight problems created by large transverse beam size
- Important to try improving various types of systems: scaling FFAGs, nonlinear non-scaling FFAGs, RLAs. These may later prove to be desirable.
- Obtaining high gradients from lower frequency (200 MHz) superconducting RF is important

